Centered Dodecagonal Number

Given a number n, find the nth Centered Dodecagonal Number.
The Centered Dodecagonal Number represents a dot in the center and other dots surrounding it in successive dodecagonal(12 sided polygon) layers.

Examples :

Input :  3
Output : 37

Input : 7
Output :253 

centered dodecagonal number

The first few centered dodecagonal numbers are:
1, 13, 37, 73, 121, 181, 253, 337, 433, 541, 661…………………..

The formula for the nth Centered dodecagonal number:

 CDg_{n}= 6n(n-1)+1  

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to find
// nth centered
// Dodecagonal number
#include <bits/stdc++.h>
using namespace std;
  
// Function to calculate Centered
// Dodecagonal number
int centeredDodecagonal(long int n)
{
    // Formula to calculate nth
    // centered Dodecagonal number
    return 6 * n * (n - 1) + 1;
}
  
// Drivers Code
int main()
{
    long int n = 2;
    cout << centeredDodecagonal(n);
    cout << endl;
    n = 9;
    cout << centeredDodecagonal(n);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program to find
// nth centered
// Dodecagonal number
import java.io.*;
  
class GFG 
{
// Function to calculate 
// Centered Dodecagonal number
static long centeredDodecagonal(long n)
{
    // Formula to calculate nth
    // centered Dodecagonal number
    return 6 * n * (n - 1) + 1;
}
  
// Driver Code
public static void main (String[] args) 
{
    long n = 2;
    System.out.println(centeredDodecagonal(n));
  
    n = 9;
    System.out.println(centeredDodecagonal(n));
}
}
  
// This code is contributed by anuj_67.

chevron_right


Output :

13
433

References
http://oeis.org/A003154



My Personal Notes arrow_drop_up