Finding the vertex, focus and directrix of a parabola

Problem – Find the vertex, focus and directrix of a parabola when the coefficients of its equation are given.

A set of points on a plain surface that forms a curve such that any point on that curve is equidistant from the focus is a parabola.
Vertex of a parabola is the coordinate from which it takes the sharpest turn whereas a is the straight line used to generate the curve.

22

The standard form of a parabola equation is y=ax^2+bx+c. Given the values of a, b and c; our task is to find the coordinates of vertex, focus and the equation of the directrix.

Example –

Input : 5 3 2
Output : Vertex:(-0.3, 1.55)
         Focus: (-0.3, 1.6)
         Directrix: y=-198
Consult the formula below for explanation.

This problem is a simple example of implementations of formulae. Given below are the required set of formulae which will help us tackle the problem.

For a parabola in the form y=ax^2+bx+c
Vertex: (-b/2a, 4ac-b^2/4a)
Focus: (-b/2a, 4ac-b^2+1/4a)
Directrix: y=c-(b^2+1)4a

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

#include <iostream>
using namespace std;
  
// Function to calculate Vertex, Focus and Directrix
void parabola(float a, float b, float c)
{
    cout << "Vertex: (" << (-b / (2 * a)) << ", "
         << (((4 * a * c) - (b * b)) / (4 * a))
         << ")" << endl;
    cout << "Focus: (" << (-b / (2 * a)) << ", "
         << (((4 * a * c) - (b * b) + 1) / (4 * a))
         << ")" << endl;
    cout << "Directrix: y="
         << c - ((b * b) + 1) * 4 * a << endl;
}
  
// Driver Function
int main()
{
    float a = 5, b = 3, c = 2;
    parabola(a, b, c);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the vertex,
// focus and directrix of a parabola
  
class GFG {
      
    // Function to calculate Vertex, 
    // Focus and Directrix
    static void parabola(float a, 
                         float b, float c)
    {
          
        System.out.println("Vertex: (" +
                          (-b / (2 * a)) + ", " +
                          (((4 * a * c) - (b * b)) /
                          (4 * a)) + ")");
                      
        System.out.println("Focus: ("
                          (-b / (2 * a)) + ", "   
                          (((4 * a * c) - (b * b) + 1) /
                          (4 * a)) + ")");
              
        System.out.println("Directrix:" + " y=" +
                          (int)(c - ((b * b) + 1) * 
                          4 * a));
    }
  
    // Driver Function
    public static void main(String[] args)
    {
        float a = 5, b = 3, c = 2;
          
        // Function calling
        parabola(a, b, c);
    }
}
  
// This code is contributed by 
// Smitha Dinesh Semwal

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Function to calculate Vertex, 
# Focus and Directrix
def parabola(a, b, c):
  
    print("Vertex: (" , (-b / (2 * a)),
        ", ", (((4 * a * c) - (b * b)) 
            / (4 * a)), ")", sep = "")
                
    print("Focus: (" , (-b / (2 * a)),
    ", ", (((4 * a * c) - (b * b) + 1)
            / (4 * a)), ")", sep = "")
                 
    print("Directrix: y=", c - ((b * b)
                + 1) * 4 * a, sep = "")
  
# Driver Function
a = 5
b = 3
c = 2
parabola(a, b, c)
  
# This code is contributed by Smitha.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the vertex,
// focus and directrix of a parabola
using System;
  
class GFG {
      
    // Function to calculate Vertex, 
    // Focus and Directrix
    static void parabola(float a, 
                         float b, float c)
    {
        Console.WriteLine("Vertex: (" +
                         (-b / (2 * a)) + ", " +
                         (((4 * a * c) - (b * b)) /
                         (4 * a)) + ")");
                      
        Console.WriteLine("Focus: (" +
                         (-b / (2 * a)) + ", " +
                         (((4 * a * c) - (b * b) + 1) /
                         (4 * a)) + ")");
                  
        Console.Write("Directrix:" + " y="
                     (int)(c - ((b * b) + 1) * 4 * a));
    }
  
    // Driver Function
    public static void Main()
    {
        float a = 5, b = 3, c = 2;
          
        // Function calling
        parabola(a, b, c);
    }
}
  
// This code is contributed by nitin mittal

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to Find the vertex,
// focus and directrix of a parabola
  
// Function to calculate Vertex, 
// Focus and Directrix
function parabola($a, $b, $c)
{
      
    echo "Vertex: (" , (-$b / (2 * $a)) , ", ",
        (((4 * $a * $c) - ($b * $b)) / (4 * $a)),
                                      ")", "\n" ;
    echo "Focus: (" , (-$b / (2 * $a)) , ", ",
        (((4 * $a * $c) - ($b * $b) + 1) / (4 * $a))
                                        , ")"," \n" ;
    echo "Directrix: y=",
        $c - (($b * $b) + 1) * 4 * $a ;
}
  
    // Driver Code
    $a = 5; $b = 3; $c = 2;
    parabola($a, $b, $c);
      
// This code is contributed by vt_m.
?>

chevron_right



Output –

Vertex:(-0.3, 1.55)
Focus: (-0.3, 1.6)
Directrix: y=-198


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.