K- Fibonacci series

Given integers ‘K’ and ‘N’, the task is to find the Nth term of the K-Fibonacci series.

In K – Fibonacci series, the first ‘K’ terms will be ‘1’ and after that every ith term of the series will be the sum of previous ‘K’ elements in the same series.

Examples:

Input: N = 4, K = 2
Output: 3
The K-Fibonacci series for K=2 is 1, 1, 2, 3, ...
And, the 4th element is 3.

Input: N = 5, K = 6
Output: 1
The K-Fibonacci series for K=6 is 1, 1, 1, 1, 1, 1, 6, 11, ...

A simple approach:

  • First, initialize the first ‘K’ elements to ‘1’.
  • Then, calculate the sum of previous ‘K’ elements by running a loop from ‘i-k‘ to ‘i-1‘.
  • Set the ith value to the sum.

Time Complexity: O(N*K)

An efficient approach:

  • First, initialize the first ‘K’ elements to ‘1’.
  • Create a variable named ‘sum’ which will be initialized with ‘K’.
  • Set the value of (K+1)th element to sum.
  • Set the next values as Array[i] = sum - Array[i-k-1] + Array[i-1] then update sum = Array[i].
  • In the end, display the Nth term of the array.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
  
// Function that finds the Nth
// element of K-Fibonacci series
void solve(int N, int K)
{
    vector<long long int> Array(N + 1, 0);
  
    // If N is less than K
    // then the element is '1'
    if (N <= K) {
        cout << "1" << endl;
        return;
    }
  
    long long int i = 0, sum = K;
  
    // first k elements are 1
    for (i = 1; i <= K; ++i) {
        Array[i] = 1;
    }
  
    // (K+1)th element is K
    Array[i] = sum;
  
    // find the elements of the
    // K-Fibonacci series
    for (int i = K + 2; i <= N; ++i) {
  
        // subtract the element at index i-k-1
        // and add the element at index i-i
        // from the sum (sum contains the sum
        // of previous 'K' elements )
        Array[i] = sum - Array[i - K - 1] + Array[i - 1];
  
        // set the new sum
        sum = Array[i];
    }
    cout << Array[N] << endl;
}
  
// Driver code
int main()
{
    long long int N = 4, K = 2;
  
    // get the Nth value
    // of K-Fibonacci series
    solve(N, K);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of above approach
  
public class GFG {
  
    // Function that finds the Nth
    // element of K-Fibonacci series
    static void solve(int N, int K)
    {
        int Array[] = new int[N + 1];
          
  
        // If N is less than K
        // then the element is '1'
        if (N <= K) {
            System.out.println("1") ;
            return;
        }
  
        int i = 0
        int sum = K;
  
        // first k elements are 1
        for (i = 1; i <= K; ++i) {
            Array[i] = 1;
        }
  
        // (K+1)th element is K
        Array[i] = sum;
  
        // find the elements of the
        // K-Fibonacci series
        for (i = K + 2; i <= N; ++i) {
  
            // subtract the element at index i-k-1
            // and add the element at index i-i
            // from the sum (sum contains the sum
            // of previous 'K' elements )
            Array[i] = sum - Array[i - K - 1] + Array[i - 1];
  
            // set the new sum
            sum = Array[i];
        }
        System.out.println(Array[N]);
    }
  
    public static void main(String args[])
    {
          int N = 4, K = 2;
  
            // get the Nth value
            // of K-Fibonacci series
            solve(N, K);
  
    }
    // This code is contributed by ANKITRAI1
}

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of above approach 
using System;
  
class GFG {
  
    // Function that finds the Nth 
    // element of K-Fibonacci series 
    public static void solve(int N, int K)
    {
        int[] Array = new int[N + 1];
  
  
        // If N is less than K 
        // then the element is '1' 
        if (N <= K)
        {
            Console.WriteLine("1");
            return;
        }
  
        int i = 0;
        int sum = K;
  
        // first k elements are 1 
        for (i = 1; i <= K; ++i)
        {
            Array[i] = 1;
        }
  
        // (K+1)th element is K 
        Array[i] = sum;
  
        // find the elements of the 
        // K-Fibonacci series 
        for (i = K + 2; i <= N; ++i)
        {
  
            // subtract the element at index i-k-1 
            // and add the element at index i-i 
            // from the sum (sum contains the sum 
            // of previous 'K' elements ) 
            Array[i] = sum - Array[i - K - 1] +
                                 Array[i - 1];
  
            // set the new sum 
            sum = Array[i];
        }
        Console.WriteLine(Array[N]);
    }
  
    // Main Method
    public static void Main(string[] args)
    {
        int N = 4, K = 2;
  
            // get the Nth value 
            // of K-Fibonacci series 
            solve(N, K);
  
    }
      
}
  
// This code is contributed
// by Shrikant13

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php 
// PHP implementation of above approach
  
// Function that finds the Nth
// element of K-Fibonacci series
function solve($N, $K)
{
    $Array = array_fill(0, $N + 1, NULL);
  
    // If N is less than K
    // then the element is '1'
    if ($N <= $K
    {
        echo "1" ."\n";
        return;
    }
  
    $i = 0;
    $sum = $K;
  
    // first k elements are 1
    for ($i = 1; $i <= $K; ++$i
    {
        $Array[$i] = 1;
    }
  
    // (K+1)th element is K
    $Array[$i] = $sum;
  
    // find the elements of the
    // K-Fibonacci series
    for ($i = $K + 2; $i <= $N; ++$i
    {
  
        // subtract the element at index i-k-1
        // and add the element at index i-i
        // from the sum (sum contains the sum
        // of previous 'K' elements )
        $Array[$i] = $sum - $Array[$i - $K - 1] + 
                            $Array[$i - 1];
  
        // set the new sum
        $sum = $Array[$i];
    }
    echo $Array[$N] . "\n";
}
  
// Driver code
$N = 4;
$K = 2;
  
// get the Nth value
// of K-Fibonacci series
solve($N, $K);
  
// This code is contributed 
// by ChitraNayal
?>

chevron_right


Output:

3

Time Complexity: O(N)



My Personal Notes arrow_drop_up