K maximum sum combinations from two arrays
Given two equally sized arrays (A, B) and N (size of both arrays).
A sum combination is made by adding one element from array A and another element of array B. Display the maximum K valid sum combinations from all the possible sum combinations.
Examples:
Input : A[] : {3, 2} B[] : {1, 4} K : 2 [Number of maximum sum combinations to be printed] Output : 7 // (A : 3) + (B : 4) 6 // (A : 2) + (B : 4) Input : A[] : {4, 2, 5, 1} B[] : {8, 0, 3, 5} K : 3 Output : 13 // (A : 5) + (B : 8) 12 // (A : 4) + (B : 8) 10 // (A : 2) + (B : 8)
Approach 1 (Naive Algorithm) :
We can use Brute force through all the possible combinations that can be made by taking one element from array A and another from array B and inserting them to a max heap. In a max heap maximum element is at the root node so whenever we pop from max heap we get the maximum element present in the heap. After inserting all the sum combinations we take out K elements from max heap and display it.
Below is the implementation of the above approach.
C++
// A simple C++ program to find N maximum // combinations from two arrays, #include <bits/stdc++.h> using namespace std; // function to display first N maximum sum // combinations void KMaxCombinations( int A[], int B[], int N, int K) { // max heap. priority_queue< int > pq; // insert all the possible combinations // in max heap. for ( int i = 0; i < N; i++) for ( int j = 0; j < N; j++) pq.push(A[i] + B[j]); // pop first N elements from max heap // and display them. int count = 0; while (count < K) { cout << pq.top() << endl; pq.pop(); count++; } } // Driver Code. int main() { int A[] = { 4, 2, 5, 1 }; int B[] = { 8, 0, 5, 3 }; int N = sizeof (A)/ sizeof (A[0]); int K = 3; KMaxCombinations(A, B, N, K); return 0; } |
Java
// Java program to find K // maximum combinations // from two arrays, import java.io.*; import java.util.*; class GFG { // function to display first K // maximum sum combinations static void KMaxCombinations( int A[], int B[], int N, int K) { // max heap. PriorityQueue<Integer> pq = new PriorityQueue<Integer>(Collections.reverseOrder()); // insert all the possible // combinations in max heap. for ( int i = 0 ; i < N; i++) for ( int j = 0 ; j < N; j++) pq.add(A[i] + B[j]); // pop first N elements // from max heap and // display them. int count = 0 ; while (count < K) { System.out.println(pq.peek()); pq.remove(); count++; } } public static void main (String[] args) { int A[] = { 4 , 2 , 5 , 1 }; int B[] = { 8 , 0 , 5 , 3 }; int N = A.length; int K = 3 ; NMaxCombinations(A, B, N, K); } } // This code is contributed by Gitanjali. |
Python 3
# python program to find # K maximum combinations # from two arrays import math from Queue import PriorityQueue # function to display first K # maximum sum combinations def KMaxCombinations( A, B, N, K): # max heap. pq = PriorityQueue() # insert all the possible # combinations in max heap. for i in range ( 0 , N): for j in range ( 0 , N): a = A[i] + B[j] pq.put(( - a, a)) # pop first N elements from # max heap and display them. count = 0 while (count < K): print (pq.get()[ 1 ]) count = count + 1 # Driver method A = [ 4 , 2 , 5 , 1 ] B = [ 8 , 0 , 5 , 3 ] N = len (A) K = 3 KMaxCombinations(A, B, N, K) # This code is contributed # by Gitanjali. |
Output:
13 12 10
Time Complexity : O(N^2)
Approach 2 (Sorting, Max heap, Map) :
Instead of brute forcing through all the possible sum combinations we should find a way to limit our search space to possible candidate sum combinations.
1. Sort both arrays array A and array B.
2. Create a max heap i.e priority_queue in C++ to store the sum combinations along with the indices of elements from both arrays A and B which make up the sum. Heap is ordered by the sum.
3. Initialize the heap with the maximum possible sum combination i.e (A[N – 1] + B[N – 1] where N is the size of array) and with the indices of elements from both arrays (N – 1, N – 1). The tuple inside max heap will be (A[N-1] + B[N – 1], N – 1, N – 1). Heap is ordered by first value i.e sum of both elements.
4. Pop the heap to get the current largest sum and along with the indices of the element that make up the sum. Let the tuple be (sum, i, j).
4.1. Next insert (A[i – 1] + B[j], i – 1, j) and (A[i] + B[j – 1], i, j – 1) into the max heap but make sure that the pair of indices i.e (i – 1, j) and (i, j – 1) are not
already present in the max heap. To check this we can use set in C++.
4.2 Go back to 4 until K times.
// An efficient C++ program to find top K elements // from two arrays. #include <bits/stdc++.h> using namespace std; // Function prints k maximum possible combinations void KMaxCombinations(vector< int >& A, vector< int >& B, int K) { // sort both arrays A and B sort(A.begin(), A.end()); sort(B.begin(), B.end()); int N = A.size(); // Max heap which contains tuple of the format // (sum, (i, j)) i and j are the indices // of the elements from array A // and array B which make up the sum. priority_queue<pair< int , pair< int , int > > > pq; // my_set is used to store the indices of // the pair(i, j) we use my_set to make sure // the indices doe not repeat inside max heap. set<pair< int , int > > my_set; // initialize the heap with the maximum sum // combination ie (A[N - 1] + B[N - 1]) // and also push indices (N - 1, N - 1) along // with sum. pq.push(make_pair(A[N - 1] + B[N - 1], make_pair(N-1, N-1))); my_set.insert(make_pair(N - 1, N - 1)); // iterate upto K for ( int count=0; count<K; count++) { // tuple format (sum, (i, j)). pair< int , pair< int , int > > temp = pq.top(); pq.pop(); cout << temp.first << endl; int i = temp.second.first; int j = temp.second.second; int sum = A[i - 1] + B[j]; // insert (A[i - 1] + B[j], (i - 1, j)) // into max heap. pair< int , int > temp1 = make_pair(i - 1, j); // insert only if the pair (i - 1, j) is // not already present inside the map i.e. // no repeating pair should be present inside // the heap. if (my_set.find(temp1) == my_set.end()) { pq.push(make_pair(sum, temp1)); my_set.insert(temp1); } // insert (A[i] + B[j - 1], (i, j - 1)) // into max heap. sum = A[i] + B[j - 1]; temp1 = make_pair(i, j - 1); // insert only if the pair (i, j - 1) // is not present inside the heap. if (my_set.find(temp1) == my_set.end()) { pq.push(make_pair(sum, temp1)); my_set.insert(temp1); } } } // Driver Code. int main() { vector< int > A = { 1, 4, 2, 3 }; vector< int > B = { 2, 5, 1, 6 }; int K = 4; KMaxCombinations(A, B, K); return 0; } |
Output :
10 9 9 8
Time Complexity :
O(N log N) assuming K <= N
Recommended Posts:
- Combinations from n arrays picking one element from each array
- Maximum OR sum of sub-arrays of two different arrays
- Maximum Sum of Products of Two Arrays
- Maximum Sum Path in Two Arrays
- Find Sum of pair from two arrays with maximum sum
- Maximum sum of increasing order elements from n arrays
- Maximize the maximum among minimum of K consecutive sub-arrays
- Maximum absolute difference between sum of two contiguous sub-arrays
- K maximum sums of non-overlapping contiguous sub-arrays
- Find Maximum dot product of two arrays with insertion of 0's
- Maximum array from two given arrays keeping order same
- Maximum sum by picking elements from two arrays in order
- K maximum sums of overlapping contiguous sub-arrays
- Break an array into maximum number of sub-arrays such that their averages are same
- Iterating over all possible combinations in an Array using Bits
If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.