Largest perfect square number in an Array

Given an array of n integers. The task is to find the largest number which is a perfect square. Print -1 if there is no number that is perfect square.

Examples:

Input : arr[] = {16, 20, 25, 2, 3, 10} 
Output : 25
Explanation: 25 is the largest number 
that is a perfect square. 

Input : arr[] = {36, 64, 10, 16, 29, 25| 
Output : 64

A Simple Solution is to sort the elements and sort the n numbers and start checking from back for a perfect square number using sqrt() function. The first number from the end which is a perfect square number is our answer. The complexity of sorting is O(n log n) and of sqrt() function is log n, so at the worst case the complexity is O(n log n).

An Efficient Solution is to iterate for all the elements in O(n) and compare every time with the maximum element, and store the maximum of all perfect squares.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find the largest perfect 
// square number among n numbers 
  
#include<iostream>
#include<math.h>
using namespace std; 
  
// Function to check if a number 
// is perfect square number or not 
bool checkPerfectSquare(double n) 
    // takes the sqrt of the number 
    double d = sqrt(n); 
  
    // checks if it is a perfect 
    // square number 
    if (d * d == n) 
        return true
  
    return false
  
// Function to find the largest perfect 
// square number in the array 
int largestPerfectSquareNumber(int a[], double n) 
    // stores the maximum of all 
    // perfect square numbers 
    int maxi = -1; 
  
    // Traverse all elements in the array 
    for (int i = 0; i < n; i++) { 
  
        // store the maximum if current 
        // element is a perfect square 
        if (checkPerfectSquare(a[i])) 
            maxi = max(a[i], maxi); 
    
  
    return maxi; 
  
// Driver Code 
int main() 
    int a[] = { 16, 20, 25, 2, 3, 10 }; 
  
    double n = sizeof(a) / sizeof(a[0]); 
  
    cout << largestPerfectSquareNumber(a, n); 
  
    return 0; 

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the largest perfect 
// square number among n numbers 
import java.lang.Math; 
import java.io.*; 
  
class GFG { 
  
  
// Function to check if a number 
// is perfect square number or not 
static boolean checkPerfectSquare(double n) 
    // takes the sqrt of the number 
    double d = Math.sqrt(n); 
  
    // checks if it is a perfect 
    // square number 
    if (d * d == n) 
        return true
  
    return false
  
// Function to find the largest perfect 
// square number in the array 
static int largestPerfectSquareNumber(int a[], double n) 
    // stores the maximum of all 
    // perfect square numbers 
    int maxi = -1
  
    // Traverse all elements in the array 
    for (int i = 0; i < n; i++) { 
  
        // store the maximum if current 
        // element is a perfect square 
        if (checkPerfectSquare(a[i])) 
            maxi = Math.max(a[i], maxi); 
    
  
    return maxi; 
  
// Driver Code 
  
  
    public static void main (String[] args) { 
            int []a = { 16, 20, 25, 2, 3, 10 }; 
  
    double n = a.length; 
  
    System.out.println( largestPerfectSquareNumber(a, n)); 
  
    
// This code is contributed 
// by inder_verma.. 

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find the largest perfect 
# square number among n numbers
  
# from math lib import sqrt()
from math import sqrt
  
# Function to check if a number  
# is perfect square number or not
def checkPerfectSquare(n) :
      
    # takes the sqrt of the number
    d = sqrt(n)
      
    # checks if it is a perfect  
    # square number  
    if d * d == n :
        return True
      
    return False
  
  
# Function to find the largest perfect  
# square number in the array  
def largestPerfectSquareNumber(a, n) :
      
    # stores the maximum of all  
    # perfect square numbers 
    maxi = -1
      
    # Traverse all elements in the array
    for i in range(n) :
          
        # store the maximum if current  
        # element is a perfect square  
        if(checkPerfectSquare(a[i])) :
            maxi = max(a[i], maxi)
      
    return maxi
      
          
# Driver code
if __name__ == "__main__" :
      
    a = [16, 20, 25, 2, 3, 10 ]
    n = len(a)
      
    print(largestPerfectSquareNumber(a, n))
      
# This code is contributed by Ryuga

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the largest perfect 
// square number among n numbers 
using System;
class GFG { 
  
  
// Function to check if a number 
// is perfect square number or not 
static bool checkPerfectSquare(double n) 
    // takes the sqrt of the number 
    double d = Math.Sqrt(n); 
  
    // checks if it is a perfect 
    // square number 
    if (d * d == n) 
        return true
  
    return false
  
// Function to find the largest perfect 
// square number in the array 
static int largestPerfectSquareNumber(int []a, double n) 
    // stores the maximum of all 
    // perfect square numbers 
    int maxi = -1; 
  
    // Traverse all elements in the array 
    for (int i = 0; i < n; i++) { 
  
        // store the maximum if current 
        // element is a perfect square 
        if (checkPerfectSquare(a[i])) 
            maxi = Math.Max(a[i], maxi); 
    
  
    return maxi; 
  
// Driver Code 
  
  
    public static void Main () { 
            int []a = { 16, 20, 25, 2, 3, 10 }; 
  
    double n = a.Length; 
  
    Console.WriteLine( largestPerfectSquareNumber(a, n)); 
  
    
// This code is contributed 
// by inder_verma.. 

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find the largest perfect 
// square number among n numbers 
  
// Function to check if a number 
// is perfect square number or not 
function checkPerfectSquare($n
    // takes the sqrt of the number 
    $d = sqrt($n); 
  
    // checks if it is a perfect 
    // square number 
    if ($d * $d == $n
        return true; 
  
    return false; 
  
// Function to find the largest perfect 
// square number in the array 
function largestPerfectSquareNumber($a, $n
    // stores the maximum of all 
    // perfect square numbers 
    $maxi = -1; 
  
    // Traverse all elements in the array 
    for ($i = 0; $i <$n; $i++)
    
  
        // store the maximum if current 
        // element is a perfect square 
        if (checkPerfectSquare($a[$i])) 
            $maxi = max($a[$i], $maxi); 
    
  
    return $maxi
  
// Driver Code 
$a = array( 16, 20, 25, 2, 3, 10 ); 
  
$n = count($a);
  
echo largestPerfectSquareNumber($a, $n); 
  
// This code is contributed 
// by inder_verma.
?>

chevron_right


Output:

25

Time Complexity : O(n)



My Personal Notes arrow_drop_up