Maximum number of 3-person teams formed from two groups

Given two integers N1 and N2 where, N1 is the number of people in group 1 and N2 is the number of people in group 2. The task is to count the maximum number of 3-person teams that can be formed when at least a single person is chosen from both the groups.

Examples:

Input: N1 = 2, N2 = 8
Output: 2
Team 1: 2 members from group 2 and 1 member from group 1
Update: N1 = 1, N2 = 6
Team 2: 2 members from group 2 and 1 member from group 1
Update: N1 = 0, N2 = 4
No further teams can be formed.

Input: N1 = 4, N2 = 5
Output: 3

Approach: Choose a single person from the team with less members and choose 2 persons from the team with more members (while possible) and update count = count + 1. Print the count in the end.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the count
// of maximum teams possible
int maxTeams(int N1, int N2)
{
  
    int count = 0;
  
    // While it is possible to form a team
    while (N1 > 0 && N2 > 0 && N1 + N2 >= 3) {
  
        // Choose 2 memebers from group 1
        // and a single memeber from group 2
        if (N1 > N2) {
            N1 -= 2;
            N2 -= 1;
        }
  
        // Choose 2 memebers from group 2
        // and a single memeber from group 1
        else {
            N1 -= 1;
            N2 -= 2;
        }
  
        // Update the count
        count++;
    }
  
    // Return the count
    return count;
}
  
// Driver code
int main()
{
  
    int N1 = 4, N2 = 5;
    cout << maxTeams(N1, N2);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
  
class GFG
{
    // Function to return the count
    // of maximum teams possible
    static int maxTeams(int N1, int N2)
    {
      
        int count = 0;
      
        // While it is possible to form a team
        while (N1 > 0 && N2 > 0 && N1 + N2 >= 3) {
      
            // Choose 2 memebers from group 1
            // and a single memeber from group 2
            if (N1 > N2) {
                N1 -= 2;
                N2 -= 1;
            }
      
            // Choose 2 memebers from group 2
            // and a single memeber from group 1
            else {
                N1 -= 1;
                N2 -= 2;
            }
      
            // Update the count
            count++;
        }
      
        // Return the count
        return count;
    }
      
    // Driver code
    public static void main(String []args)
    {
      
        int N1 = 4, N2 = 5;
        System.out.println(maxTeams(N1, N2));
      
          
    }
  
}
  
// This code is contributed by ihritik

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
  
  
# Function to return the count
# of maximum teams possible
def maxTeams(N1, N2):
  
  
    count = 0
  
    # While it is possible to form a team
    while (N1 > 0 and N2 > 0 and N1 + N2 >= 3) :
  
        # Choose 2 memebers from group 1
        # and a single memeber from group 2
        if (N1 > N2): 
            N1 -= 2
            N2 -= 1
          
  
        # Choose 2 memebers from group 2
        # and a single memeber from group 1
        else:
            N1 -= 1
            N2 -= 2
          
  
        # Update the count
        count=count+1
      
  
    # Return the count
    return count
  
      
# Driver code
N1 = 4
N2 = 5
print(maxTeams(N1, N2))
  
# This code is contributed by ihritik

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
  
using System;
class GFG
{
    // Function to return the count
    // of maximum teams possible
    static int maxTeams(int N1, int N2)
    {
      
        int count = 0;
      
        // While it is possible to form a team
        while (N1 > 0 && N2 > 0 && N1 + N2 >= 3) {
      
            // Choose 2 memebers from group 1
            // and a single memeber from group 2
            if (N1 > N2) {
                N1 -= 2;
                N2 -= 1;
            }
      
            // Choose 2 memebers from group 2
            // and a single memeber from group 1
            else {
                N1 -= 1;
                N2 -= 2;
            }
      
            // Update the count
            count++;
        }
      
        // Return the count
        return count;
    }
      
    // Driver code
    public static void Main()
    {
      
        int N1 = 4, N2 = 5;
        Console.WriteLine(maxTeams(N1, N2));
      
          
    }
  
}
  
// This code is contributed by ihritik

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of the approach 
  
// Function to return the count 
// of maximum teams possible 
function maxTeams($N1, $N2)
{
    $count = 0 ;
  
    // While it is possible to form a team 
    while ($N1 > 0 && $N2 > 0 &&
                $N1 + $N2 >= 3)
    
  
        // Choose 2 memebers from group 1 
        // and a single memeber from group 2 
        if ($N1 > $N2
        
            $N1 -= 2; 
            $N2 -= 1; 
        
  
        // Choose 2 memebers from group 2 
        // and a single memeber from group 1 
        else
        
            $N1 -= 1; 
            $N2 -= 2; 
        
  
        // Update the count 
        $count++; 
    
  
    // Return the count 
    return $count
  
// Driver code 
$N1 = 4 ;
$N2 = 5 ;
  
echo maxTeams($N1, $N2);
  
// This code is contributed by Ryuga
?>

chevron_right


Output:

3


My Personal Notes arrow_drop_up


Article Tags :
Practice Tags :


1


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.