Maximum Perimeter Triangle from array

Given an Array of non-negative integers. Find out three elements from this array which form a triangle of maximum perimeter.

Examples :

Input : {6, 1, 6, 5, 8, 4}
Output : 20

Input : {2, 20, 7, 55, 1, 33, 12, 4}
Output : Triangle formation is not possible.

Input: {33, 6, 20, 1, 8, 12, 5, 55, 4, 9}
Output: 41

Naive Solution:
The brute force solution is: check for all combination of 3 elements whether it forms a triangle or not and update the maximum perimeter if it forms a triangle. Complexity of naive solution is O(n3). Below is the code for it.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// Brute force solution to find
// out maximum perimeter triangle which
// can be formed using the elements
// of the given array
#include <iostream>
#include <algorithm>
  
using namespace std;
  
// Function to find out maximum perimeter
void maxPerimeter(int arr[], int n){
  
    // initialize maximum perimeter
    // as 0.
    int maxi = 0;
  
    // pick up 3 different elements
    // from the array.
    for (int i = 0; i < n - 2; i++){
        for (int j = i + 1; j < n - 1; j++){
            for (int k = j + 1; k < n; k++){
  
                // a, b, c are 3 sides of the triangle
                int a = arr[i];
                int b = arr[j];
                int c = arr[k];
  
                // check whether a, b, c forms
                // a triangle or not.
                if (a < b+c && b < c+a && c < a+b){
  
                    // if it forms a triangle
                    // then update the maximum value.
                    maxi = max(maxi, a+b+c);
                }
            }
        }
    }
  
    // If maximum perimeter is non-zero
    // then print it.
    if (maxi) cout << "Maximum Perimeter is: " 
                   << maxi << endl;
  
    // otherwise no triangle formation
    // is possible.
    else cout << "Triangle formation "
        << "is not possible." << endl;
}
  
// Driver Program
int main()
{
    // test case 1
    int arr1[6] = {6, 1, 6, 5, 8, 4};
    maxPerimeter(arr1, 6);
  
    // test case 2
    int arr2[8] = {2, 20, 7, 55, 1,
                    33, 12, 4};
    maxPerimeter(arr2, 8);
  
    // test case 3
    int arr3[10] = {33, 6, 20, 1, 8,
                    12, 5, 55, 4, 9};
    maxPerimeter(arr3, 10);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Brute force solution to find out maximum 
// perimeter triangle which can be formed 
// using the elements of the given array
import java.io.*;
  
class GFG {
  
    // Function to find out maximum perimeter
    static void maxPerimeter(int arr[], int n)
    {
      
        // initialize maximum perimeter as 0.
        int maxi = 0;
      
        // pick up 3 different elements
        // from the array.
        for (int i = 0; i < n - 2; i++)
        {
            for (int j = i + 1; j < n - 1; j++)
            {
                for (int k = j + 1; k < n; k++) 
                {
      
                    // a, b, c are 3 sides of
                    // the triangle
                    int a = arr[i];
                    int b = arr[j];
                    int c = arr[k];
      
                    // check whether a, b, c 
                    // forms a triangle or not.
                    if (a < b+c && b < c+a && c < a+b)
                    {
      
                        // if it forms a triangle
                        // then update the maximum 
                        // value.
                        maxi = Math.max(maxi, a+b+c);
                    }
                }
            }
        }
      
        // If maximum perimeter is non-zero
        // then print it.
        if (maxi > 0
        System.out.println( "Maximum Perimeter is: "
                                             + maxi);
      
        // otherwise no triangle formation
        // is possible.
        else
        System.out.println( "Triangle formation "
                              + "is not possible." );
    }
      
    // Driver Program
    public static void main (String[] args)
    {
          
        // test case 1
        int arr1[] = {6, 1, 6, 5, 8, 4};
        maxPerimeter(arr1, 6);
      
        // test case 2
        int arr2[] = {2, 20, 7, 55, 1, 33, 12, 4};
        maxPerimeter(arr2, 8);
      
        // test case 3
        int arr3[] = {33, 6, 20, 1, 8,
                                12, 5, 55, 4, 9};
        maxPerimeter(arr3, 10);
    }
}
  
// This code is contributed by anuj_67.

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# Brute force solution to find
# out maximum perimeter triangle 
# which can be formed using the 
# elements of the given array
  
# Function to find out 
# maximum perimeter
def maxPerimeter(arr):
    maxi = 0
    n = len(arr)
      
    # pick up 3 different 
    # elements from the array.
    for i in range(n - 2):
        for j in range(i + 1, n - 1):
            for k in range(j + 1, n):
                  
                # a, b, c are 3 sides 
                # of the triangle
                a = arr[i]
                b = arr[j]
                c = arr[k]
                if(a < b + c and b < a +
                             and c < a + b):
                    maxi = max(maxi, a + b + c)
  
    if(maxi == 0):
        return "Triangle formation is not possible"
    else:
        return "Maximum Perimeter is: "+ str(maxi)
  
# Driver code
def main():
    arr1 = [6, 1, 6, 5, 8, 4]
    a = maxPerimeter(arr1)
    print(a)
  
    arr2 = [2, 20, 7, 55
            1, 33, 12, 4]
    a = maxPerimeter(arr2)
    print(a)
  
    arr3 = [33, 6, 20, 1, 8
            12, 5, 55, 4, 9]
    a = maxPerimeter(arr3)
    print(a)
  
if __name__=='__main__':
    main()
  
# This code is contributed 
# by Pritha Updhayay

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// Brute force solution to find out 
// maximum perimeter triangle which 
// can be formed using the elements 
// of the given array
using System;
  
class GFG 
{
  
    // Function to find out 
    // maximum perimeter
    static void maxPerimeter(int []arr,     
                             int n)
    {
      
        // initialize maximum 
        // perimeter as 0.
        int maxi = 0;
      
        // pick up 3 different elements
        // from the array.
        for (int i = 0; i < n - 2; i++)
        {
            for (int j = i + 1; j < n - 1; j++)
            {
                for (int k = j + 1; k < n; k++) 
                {
      
                    // a, b, c are 3 sides of
                    // the triangle
                    int a = arr[i];
                    int b = arr[j];
                    int c = arr[k];
      
                    // check whether a, b, c 
                    // forms a triangle or not.
                    if (a < b + c && 
                        b < c + a && 
                        c < a + b)
                    {
      
                        // if it forms a triangle
                        // then update the maximum 
                        // value.
                        maxi = Math.Max(maxi, a + b + c);
                    }
                }
            }
        }
      
        // If maximum perimeter is 
        // non-zero then print it.
        if (maxi > 0) 
        Console.WriteLine("Maximum Perimeter is: "+ maxi);
      
        // otherwise no triangle 
        // formation is possible.
        else
        Console.WriteLine("Triangle formation "
                          "is not possible.");
    }
      
    // Driver Code
    public static void Main ()
    {
          
        // test case 1
        int []arr1 = {6, 1, 6, 
                      5, 8, 4};
        maxPerimeter(arr1, 6);
      
        // test case 2
        int []arr2 = {2, 20, 7, 55, 
                      1, 33, 12, 4};
        maxPerimeter(arr2, 8);
      
        // test case 3
        int []arr3 = {33, 6, 20, 1, 8,
                      12, 5, 55, 4, 9};
        maxPerimeter(arr3, 10);
    }
}
  
// This code is contributed by anuj_67.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// Brute force solution to find
// out maximum perimeter triangle which
// can be formed using the elements
// of the given array
  
// Function to find out
// maximum perimeter
function maxPerimeter($arr, $n)
{
  
    // initialize maximum 
    // perimeter as 0.
    $maxi = 0;
  
    // pick up 3 different 
    // elements from the array.
    for ($i = 0; $i < $n - 2; $i++)
    {
        for ( $j = $i + 1; $j < $n - 1; $j++)
        {
            for ( $k = $j + 1; $k < $n; $k++)
            {
  
                // a, b, c are 3 sides 
                // of the triangle
                $a = $arr[$i];
                $b = $arr[$j];
                $c = $arr[$k];
  
                // check whether a, b, c 
                // forms a triangle or not.
                if ($a < $b + $c and 
                    $b < $c + $a and 
                    $c < $a + $b)
                {
  
                    // if it forms a triangle
                    // then update the maximum value.
                    $maxi = max($maxi, $a + $b + $c);
                }
            }
        }
    }
  
    // If maximum perimeter is 
    // non-zero then print it.
    if ($maxi
    {
    echo "Maximum Perimeter is: ";
    echo $maxi ,"\n";
    }
  
    // otherwise no triangle 
    // formation is possible.
    else
    {
    echo "Triangle formation ";
    echo "is not possible. \n";
    }
}
  
// Driver Code
  
// test case 1
$arr1 = array(6, 1, 6, 5, 8, 4);
maxPerimeter($arr1, 6);
  
// test case 2
$arr2 = array(2, 20, 7, 55, 
              1, 33, 12, 4);
maxPerimeter($arr2, 8);
  
// test case 3
$arr3 = array(33, 6, 20, 1, 8,
              12, 5, 55, 4, 9);
maxPerimeter($arr3, 10);
  
// This code is contributed by anuj_67.
?>

chevron_right


Output :

Maximum Perimeter is: 20
Triangle formation is not possible.
Maximum Perimeter is: 41

Efficient Approach:
First we can sort the array in non-increasing order. So, the first element will be maximum and the last will be minimum. Now if the first 3 elements of this sorted array forms a triangle then it will be the maximum perimeter triangle, as for all other combination the sum of elements(i.e. the perimeter of that triangle) will be = b >= c). a, b,c can not form a triangle, so a >= b + c. As, b and c = c+d (if we drop b and take d) or a >= b+d (if we drop c and take d). So, we have to drop a and pick up d.
Again same set of analysis for b, c and d. We can continue this till last and whenever we find a triangle forming triple then we can stop checking, as this triple gives maximum perimeter.
Hence, if arr[i] < arr[i+1] + arr[i+2] (0 <= i <= n-3)in the sorted array then arr[i], arr[i+1] and arr[i+2] forms a triangle.
Below is the simple implementation of this concept:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// Efficient solution to find
// out maximum perimeter triangle which
// can be formed using the elements
// of the given array
#include <iostream>
#include <algorithm>
  
using namespace std;
  
// Function to find out maximum perimeter
void maxPerimeter(int arr[], int n){
  
    // sort the array elements
    // in reversed order
    sort(arr, arr+n, greater<int>());
  
    // initialize maximum
    // perimeter to 0
    int maxi = 0;
  
    // loop through the sorted array
    // and check whether it forms a
    // triangle or not.
    for (int i = 0; i < n-2; i++){
  
        // Check whether arr[i], arr[i+1]
        // and arr[i+2] forms a triangle
        // or not.
        if (arr[i] < arr[i+1] + arr[i+2]){
  
            // if it forms a triangle then
            // it is the triangle with
            // maximum perimeter.
            maxi = max(maxi, arr[i] + arr[i+1] + arr[i+2]);
            break;
        }
    }
  
    // If maximum perimeter is non-zero
    // then print it.
    if (maxi)
        cout << "Maximum Perimeter is: "
        << maxi << endl;
  
    // otherwise no triangle formation
    // is possible.
    else
        cout << "Triangle formation"
        << "is not possible." << endl;
}
  
// Driver Program
int main()
{
    // test case 1
    int arr1[6] = {6, 1, 6, 5, 8, 4};
    maxPerimeter(arr1, 6);
  
    // test case 2
    int arr2[8] = {2, 20, 7, 55, 1,
                    33, 12, 4};
    maxPerimeter(arr2, 8);
  
    // test case 3
    int arr3[10] = {33, 6, 20, 1, 8,
                    12, 5, 55, 4, 9};
    maxPerimeter(arr3, 10);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Efficient solution to find 
// out maximum perimeter triangle which 
// can be formed using the elements 
// of the given array 
  
import java.util.Arrays;
  
class GFG {
  
// Function to find out maximum perimeter 
    static void maxPerimeter(int arr[], int n) {
  
        // sort the array elements 
        // in reversed order 
        arr = arrRevSort(arr);
        //sort(arr, arr+n, greater<int>()); 
  
        // initialize maximum 
        // perimeter to 0 
        int maxi = 0;
  
        // loop through the sorted array 
        // and check whether it forms a 
        // triangle or not. 
        for (int i = 0; i < n - 2; i++) {
  
            // Check whether arr[i], arr[i+1] 
            // and arr[i+2] forms a triangle 
            // or not. 
            if (arr[i] < arr[i + 1] + arr[i + 2]) {
  
                // if it forms a triangle then 
                // it is the triangle with 
                // maximum perimeter. 
                maxi = Math.max(maxi, arr[i] + arr[i + 1] + arr[i + 2]);
                break;
            }
        }
  
        // If maximum perimeter is non-zero 
        // then print it. 
        if (maxi > 0) {
            System.out.println("Maximum Perimeter is: " + maxi);
        } // otherwise no triangle formation 
        // is possible. 
        else {
            System.out.println("Triangle formation is not possible.");
        }
    }
    //Function return sorted array in Decreasing 
  
    static int[] arrRevSort(int[] arr) {
        Arrays.sort(arr, 0, arr.length);
        int j = arr.length - 1;
        for (int i = 0; i < arr.length / 2; i++, j--) {
            int temp = arr[i];
            arr[i] = arr[j];
            arr[j] = temp;
        }
        return arr;
    }
  
// Driver Program 
    public static void main(String[] args) {
        // test case 1 
        int arr1[] = {6, 1, 6, 5, 8, 4};
        maxPerimeter(arr1, 6);
  
        // test case 2 
        int arr2[] = {2, 20, 7, 55, 1, 33, 12, 4};
        maxPerimeter(arr2, 8);
  
        // test case 3 
        int arr3[] = {33, 6, 20, 1, 8, 12, 5, 55, 4, 9};
        maxPerimeter(arr3, 10);
    }
}
/*This Java code is contributed by 29AjayKumar*/

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Efficient solution to find
# out maximum perimeter triangle which
# can be formed using the elements
# of the given array
  
# Function to find the 
# maximum perimeter
def maxPerimeter(arr):
    maxi = 0
    n = len(arr)
    arr.sort(reverse = True)
  
    for i in range(0, n - 2):
        if arr[i] < (arr[i + 1] + arr[i + 2]):
            maxi = max(maxi, arr[i] + 
                       arr[i + 1] + arr[i + 2])
            break
  
    if(maxi == 0):
        return "Triangle formation is not possible"
    else:
        return "Maximum Perimeter is: "+ str(maxi)
  
# Driver Code
def main():
    arr1 = [6, 1, 6, 5, 8, 4]
    a = maxPerimeter(arr1)
    print(a)
  
    arr2 = [2, 20, 7, 55
            1, 33, 12, 4]
    a = maxPerimeter(arr2)
    print(a)
  
    arr3 = [33, 6, 20, 1, 8,
            12, 5, 55, 4, 9]
    a = maxPerimeter(arr3)
    print(a)
  
if __name__=='__main__':
    main()
  
# This code is contributed 
# by Pritha Upadhyay

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// Efficient solution to find 
// out maximum perimeter triangle which 
// can be formed using the elements 
// of the given array 
  
using System;
  
class GFG {
  
// Function to find out maximum perimeter 
    static void maxPerimeter(int[] arr, int n) {
  
        // sort the array elements 
        // in reversed order 
        arr = arrRevSort(arr);
        //sort(arr, arr+n, greater<int>()); 
  
        // initialize maximum 
        // perimeter to 0 
        int maxi = 0;
  
        // loop through the sorted array 
        // and check whether it forms a 
        // triangle or not. 
        for (int i = 0; i < n - 2; i++) {
  
            // Check whether arr[i], arr[i+1] 
            // and arr[i+2] forms a triangle 
            // or not. 
            if (arr[i] < arr[i + 1] + arr[i + 2]) {
  
                // if it forms a triangle then 
                // it is the triangle with 
                // maximum perimeter. 
                maxi = Math.Max(maxi, arr[i] + arr[i + 1] + arr[i + 2]);
                break;
            }
        }
  
        // If maximum perimeter is non-zero 
        // then print it. 
        if (maxi > 0) {
            Console.WriteLine("Maximum Perimeter is: " + maxi);
        } // otherwise no triangle formation 
        // is possible. 
        else {
            Console.WriteLine("Triangle formation is not possible.");
        }
    }
    //Function return sorted array in Decreasing 
  
    static int[] arrRevSort(int[] arr) {
        Array.Sort(arr);
        int j = arr.Length - 1;
        for (int i = 0; i < arr.Length / 2; i++, j--) {
            int temp = arr[i];
            arr[i] = arr[j];
            arr[j] = temp;
        }
        return arr;
    }
  
// Driver Program 
    public static void Main() {
        // test case 1 
        int[] arr1 = {6, 1, 6, 5, 8, 4};
        maxPerimeter(arr1, 6);
  
        // test case 2 
        int[] arr2 = {2, 20, 7, 55, 1, 33, 12, 4};
        maxPerimeter(arr2, 8);
  
        // test case 3 
        int[] arr3 = {33, 6, 20, 1, 8, 12, 5, 55, 4, 9};
        maxPerimeter(arr3, 10);
    }
}
/*This Java code is contributed by mits*/

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// Efficient solution to find out maximum 
// perimeter triangle which can be formed 
// using the elements of the given array
  
// Function to find out maximum perimeter
function maxPerimeter(&$arr, $n)
{
  
    // sort the array elements in 
    // reversed order
    rsort($arr);
  
    // initialize maximum perimeter to 0
    $maxi = 0;
  
    // loop through the sorted array
    // and check whether it forms a
    // triangle or not.
    for ($i = 0; $i < $n - 2; $i++)
    {
  
        // Check whether arr[i], arr[i+1]
        // and arr[i+2] forms a triangle
        // or not.
        if ($arr[$i] < $arr[$i + 1] + 
                       $arr[$i + 2])
        {
  
            // if it forms a triangle then
            // it is the triangle with
            // maximum perimeter.
            $maxi = max($maxi, $arr[$i] +
                               $arr[$i + 1] + 
                               $arr[$i + 2]);
            break;
        }
    }
  
    // If maximum perimeter is non-zero
    // then print it.
    if ($maxi)
    {
        echo ("Maximum Perimeter is: ");
        echo ($maxi) ;
        echo ("\n");
    }
  
    // otherwise no triangle formation
    // is possible.
    else
    {
        echo ("Triangle formation ");
        echo ("is not possible.");
        echo ("\n");
    }
}
  
// Driver Code
  
// test case 1
$arr1 = array(6, 1, 6, 5, 8, 4);
$s = sizeof($arr1);
maxPerimeter($arr1, $s);
  
// test case 2
$arr2 = array(2, 20, 7, 55, 1,33, 12, 4);
$st = sizeof($arr2);
maxPerimeter($arr2, $st);
  
// test case 3
$arr3 = array(33, 6, 20, 1, 8,
              12, 5, 55, 4, 9);
$st1 = sizeof($arr3);
maxPerimeter($arr3, $st1);
  
// This code is contributed
// by Shivi_Aggarwal 
?>

chevron_right


Output :

Maximum Perimeter is: 20
Triangle formation is not possible.
Maximum Perimeter is: 41

Time complexity of this approach is O(n*log(n)). This much time is required to sort the array.



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.




Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.