# Maximum product of indexes of next greater on left and right

Given an array a[1..N]. For each element at position i (1 <= i <= N). Where

1. L(i) is defined as closest index j such that j < i and a[j] > a[i]. If no such j exists then L(i) = 0.
2. R(i) is defined as closest index k such that k > i and a[k] > a[i]. If no such k exists then R(i) = 0.

LRProduct(i) = L(i)*R(i) .

We need to find an index with maximum LRProduct

Examples:

Input : 1 1 1 1 0 1 1 1 1 1
Output : 24
For {1, 1, 1, 1, 0, 1, 1, 1, 1, 1} all element are same except 0. So only for zero their exist greater element and for others it will be zero. for zero, on left 4th element is closest and greater than zero and on right 6th element is closest and greater. so maximum
product will be 4*6 = 24.

Input : 5 4 3 4 5
Output : 8
For {5, 4, 3, 4, 5}, L[] = {0, 1, 2, 1, 0} and R[]
= {0, 5, 4, 5, 0},
LRProduct = {0, 5, 8, 5, 0} and max in this is 8.

Note: Taking starting index as 1 for finding LRproduct.

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

This problem is based on Next Greater Element.

From the current position, we need to find the closest greater element on its left and right side.
So to find next greater element, we used stack one from left and one from right.simply we are checking which element is greater and storing their index at specified position.
1- if stack is empty, push current index.
2- if stack is not empty
….a) if current element is greater than top element then store the index of current element on index of top element.

Do this, once traversing array element from left and once from right and form the left and right array, then, multiply them to find max product value.

## C++

 `// C++ program to find the max ` `// LRproduct[i] among all i ` `#include ` `using` `namespace` `std; ` `#define MAX 1000 ` ` `  `// function to find just next greater ` `// element in left side ` `vector<``int``> nextGreaterInLeft(``int` `a[], ``int` `n) ` `{ ` `    ``vector<``int``> left_index(MAX, 0); ` `    ``stack<``int``> s; ` ` `  `    ``for` `(``int` `i = n - 1; i >= 0; i--) { ` ` `  `        ``// checking if current element is greater than top ` `        ``while` `(!s.empty() && a[i] > a[s.top() - 1]) { ` `            ``int` `r = s.top(); ` `            ``s.pop(); ` ` `  `            ``// on index of top store the current element ` `            ``// index which is just greater than top element ` `            ``left_index[r - 1] = i + 1; ` `        ``} ` ` `  `        ``// else push the current element in stack ` `        ``s.push(i + 1); ` `    ``} ` `    ``return` `left_index; ` `} ` ` `  `// function to find just next greater element ` `// in right side ` `vector<``int``> nextGreaterInRight(``int` `a[], ``int` `n) ` `{ ` `    ``vector<``int``> right_index(MAX, 0); ` `    ``stack<``int``> s; ` `    ``for` `(``int` `i = 0; i < n; ++i) { ` ` `  `        ``// checking if current element is greater than top ` `        ``while` `(!s.empty() && a[i] > a[s.top() - 1]) { ` `            ``int` `r = s.top(); ` `            ``s.pop(); ` ` `  `            ``// on index of top store the current element ` `            ``// index which is just greater than top element ` `            ``// stored index should be start with 1 ` `            ``right_index[r - 1] = i + 1; ` `        ``} ` ` `  `        ``// else push the current element in stack ` `        ``s.push(i + 1); ` `    ``} ` `    ``return` `right_index; ` `} ` ` `  `// Function to find maximum LR product ` `int` `LRProduct(``int` `arr[], ``int` `n) ` `{ ` `    ``// for each element storing the index of just ` `    ``// greater element in left side ` `    ``vector<``int``> left = nextGreaterInLeft(arr, n); ` ` `  `    ``// for each element storing the index of just ` `    ``// greater element in right side ` `    ``vector<``int``> right = nextGreaterInRight(arr, n); ` `    ``int` `ans = -1; ` `    ``for` `(``int` `i = 1; i <= n; i++) { ` ` `  `        ``// finding the max index product ` `        ``ans = max(ans, left[i] * right[i]); ` `    ``} ` ` `  `    ``return` `ans; ` `} ` ` `  `// Drivers code ` `int` `main() ` `{ ` `    ``int` `arr[] = { 5, 4, 3, 4, 5 }; ` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr[1]); ` ` `  `    ``cout << LRProduct(arr, n); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java program to find the ` `// max LRproduct[i] among all i ` `import` `java.io.*; ` `import` `java.util.*; ` ` `  `class` `GFG  ` `{ ` `    ``static` `int` `MAX = ``1000``; ` `     `  `    ``// function to find just next  ` `    ``// greater element in left side ` `    ``static` `int``[] nextGreaterInLeft(``int` `[]a,  ` `                                   ``int` `n) ` `    ``{ ` `        ``int` `[]left_index = ``new` `int``[MAX]; ` `        ``Stack s = ``new` `Stack(); ` `     `  `        ``for` `(``int` `i = n - ``1``; i >= ``0``; i--) ` `        ``{ ` `     `  `            ``// checking if current  ` `            ``// element is greater than top ` `            ``while` `(s.size() != ``0` `&&  ` `                     ``a[i] > a[s.peek() - ``1``]) ` `            ``{ ` `                ``int` `r = s.peek(); ` `                ``s.pop(); ` `     `  `                ``// on index of top store  ` `                ``// the current element  ` `                ``// index which is just  ` `                ``// greater than top element ` `                ``left_index[r - ``1``] = i + ``1``; ` `            ``} ` `     `  `            ``// else push the current ` `            ``// element in stack ` `            ``s.push(i + ``1``); ` `        ``} ` `        ``return` `left_index; ` `    ``} ` `     `  `    ``// function to find just next  ` `    ``// greater element in right side ` `    ``static` `int``[] nextGreaterInRight(``int` `[]a,  ` `                                    ``int` `n) ` `    ``{ ` `        ``int` `[]right_index = ``new` `int``[MAX]; ` `        ``Stack s = ``new` `Stack(); ` `        ``for` `(``int` `i = ``0``; i < n; ++i) { ` `     `  `            ``// checking if current element  ` `            ``// is greater than top ` `            ``while` `(s.size() != ``0` `&&  ` `                        ``a[i] > a[s.peek() - ``1``])  ` `            ``{ ` `                ``int` `r = s.peek(); ` `                ``s.pop(); ` `     `  `                ``// on index of top store  ` `                ``// the current element index ` `                ``// which is just greater than  ` `                ``// top element stored index  ` `                ``// should be start with 1 ` `                ``right_index[r - ``1``] = i + ``1``; ` `            ``} ` `     `  `            ``// else push the current  ` `            ``// element in stack ` `            ``s.push(i + ``1``); ` `        ``} ` `        ``return` `right_index; ` `    ``} ` `     `  `    ``// Function to find  ` `    ``// maximum LR product ` `    ``static` `int` `LRProduct(``int` `[]arr, ``int` `n) ` `    ``{ ` `         `  `        ``// for each element storing  ` `        ``// the index of just greater ` `        ``// element in left side ` `        ``int` `[]left = nextGreaterInLeft(arr, n); ` `     `  `        ``// for each element storing ` `        ``// the index of just greater ` `        ``// element in right side ` `        ``int` `[]right = nextGreaterInRight(arr, n); ` `        ``int` `ans = -``1``; ` `        ``for` `(``int` `i = ``1``; i <= n; i++) ` `        ``{ ` `     `  `            ``// finding the max ` `            ``// index product ` `            ``ans = Math.max(ans, left[i] *  ` `                                ``right[i]); ` `        ``} ` `     `  `        ``return` `ans; ` `    ``} ` `     `  `    ``// Driver code ` `    ``public` `static` `void` `main(String args[]) ` `    ``{ ` `        ``int` `[]arr = ``new` `int``[]{ ``5``, ``4``, ``3``, ``4``, ``5` `}; ` `        ``int` `n = arr.length; ` `     `  `        ``System.out.print(LRProduct(arr, n)); ` `    ``} ` `} ` ` `  `// This code is contributed by  ` `// Manish Shaw(manishshaw1) `

## C#

 `// C# program to find the max LRproduct[i]  ` `// among all i ` `using` `System; ` `using` `System.Collections.Generic; ` ` `  `class` `GFG { ` `     `  `    ``static` `int` `MAX = 1000; ` `     `  `    ``// function to find just next greater ` `    ``// element in left side ` `    ``static` `int``[] nextGreaterInLeft(``int` `[]a, ``int` `n) ` `    ``{ ` `        ``int` `[]left_index = ``new` `int``[MAX]; ` `        ``Stack<``int``> s = ``new` `Stack<``int``>(); ` `     `  `        ``for` `(``int` `i = n - 1; i >= 0; i--) { ` `     `  `            ``// checking if current element is  ` `            ``// greater than top ` `            ``while` `(s.Count != 0 && a[i] > a[s.Peek() - 1]) ` `            ``{ ` `                ``int` `r = s.Peek(); ` `                ``s.Pop(); ` `     `  `                ``// on index of top store the current ` `                ``// element index which is just greater ` `                ``// than top element ` `                ``left_index[r - 1] = i + 1; ` `            ``} ` `     `  `            ``// else push the current element in stack ` `            ``s.Push(i + 1); ` `        ``} ` `        ``return` `left_index; ` `    ``} ` `     `  `    ``// function to find just next greater element ` `    ``// in right side ` `    ``static` `int``[] nextGreaterInRight(``int` `[]a, ``int` `n) ` `    ``{ ` `        ``int` `[]right_index = ``new` `int``[MAX]; ` `        ``Stack<``int``> s = ``new` `Stack<``int``>(); ` `        ``for` `(``int` `i = 0; i < n; ++i) { ` `     `  `            ``// checking if current element is ` `            ``// greater than top ` `            ``while` `(s.Count != 0 && a[i] > a[s.Peek() - 1])  ` `            ``{ ` `                ``int` `r = s.Peek(); ` `                ``s.Pop(); ` `     `  `                ``// on index of top store the current ` `                ``// element index which is just greater ` `                ``// than top element stored index should ` `                ``// be start with 1 ` `                ``right_index[r - 1] = i + 1; ` `            ``} ` `     `  `            ``// else push the current element in stack ` `            ``s.Push(i + 1); ` `        ``} ` `        ``return` `right_index; ` `    ``} ` `     `  `    ``// Function to find maximum LR product ` `    ``static` `int` `LRProduct(``int` `[]arr, ``int` `n) ` `    ``{ ` `         `  `        ``// for each element storing the index of just ` `        ``// greater element in left side ` `        ``int` `[]left = nextGreaterInLeft(arr, n); ` `     `  `        ``// for each element storing the index of just ` `        ``// greater element in right side ` `        ``int` `[]right = nextGreaterInRight(arr, n); ` `        ``int` `ans = -1; ` `        ``for` `(``int` `i = 1; i <= n; i++) { ` `     `  `            ``// finding the max index product ` `            ``ans = Math.Max(ans, left[i] * right[i]); ` `        ``} ` `     `  `        ``return` `ans; ` `    ``} ` `     `  `    ``// Drivers code ` `    ``static` `void` `Main() ` `    ``{ ` `        ``int` `[]arr = ``new` `int``[]{ 5, 4, 3, 4, 5 }; ` `        ``int` `n = arr.Length; ` `     `  `        ``Console.Write(LRProduct(arr, n)); ` `    ``} ` `} ` ` `  `// This code is contributed by Manish Shaw ` `// (manishshaw1) `

Output:

```8
```

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : manishshaw1, Vivek Agarwal

Article Tags :
Practice Tags :

1

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.