# Minimum changes required to make two arrays identical

Given two arrays and with n elements each. The task is to make these two arrays identical i:e, for each , we want to make . In a single operation, you can choose two integers x and y, and replace all the occurrences of x in both the arrays with y. Notice that regardless of the number of occurrences replaced, it will still be counted as a single operation. You have to output minimum number of operation required.

Examples:

Input : 1 2 2
1 2 5
Output: 1
Here, (x, y) = (5, 2) hence ans = 1.

Input : 2 1 1 3 5
1 2 2 4 5
Output: 2
Here, (x, y) = (1, 2) and (3, 4) thus ans = 2.
Other pairs are also possible.


## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

This problem can be solved with the help of Disjoint Set Union.
We will check all elements of both the arrays i:e for each . If the elements belong to same id then we skip it. Else, we do a Union operation on both elements. At last the answer will be the sum of the sizes of all the different disjoint sets formed i:e . We subtract 1 because initially we take size of each set to be 1.
Below is the implementation of above approach :

## C++

 // C++ program to find minimum changes   // required to make two arrays identical  #include  using namespace std;     #define N 100010     /*  'id': stores parent of a node.      'sz': stores size of a DSU tree. */ int id[N], sz[N];     // Function to assign root  int Root(int idx)  {      int i = idx;      while (i != id[i])          id[i] = id[id[i]], i = id[i];         return i;  }     // Function to find Union  void Union(int a, int b)  {      int i = Root(a), j = Root(b);         if (i != j) {          if (sz[i] >= sz[j]) {              id[j] = i, sz[i] += sz[j];              sz[j] = 0;          }          else {              id[i] = j, sz[j] += sz[i];              sz[i] = 0;          }      }  }     // function to find minimum changes required  // to make both array equal.  int minChange(int n, int a[], int b[])  {         // Sets as single elements      for (int i = 0; i < N; i++)          id[i] = i, sz[i] = 1;         // Combine items if they belong to different      // sets.      for (int i = 0; i < n; ++i)             // true if both elements have different root          if (Root(a[i]) != Root(b[i]))              Union(a[i], b[i]); // make root equal         // Find sum sizes of all sets formed.      int ans = 0;      for (int i = 0; i < n; ++i)          if (id[i] == i)              ans += (sz[i] - 1);         return ans;  }     // Driver program  int main()  {         int a[] = { 2, 1, 1, 3, 5 }, b[] = { 1, 2, 2, 4, 5 };      int n = sizeof(a) / sizeof(a[0]);      cout << minChange(n, a, b);      return 0;  }

## Java

 // Java program to find minimum changes   // required to make two arrays identical     class GFG{  static int N=100010;     /* 'id': stores parent of a node.      'sz': stores size of a DSU tree. */ static int[] id=new int[100010];  static int[] sz=new int[100010];     // Function to assign root  static int Root(int idx)  {      int i = idx;      while (i != id[i])          {              id[i] = id[id[i]];              i = id[i];          }         return i;  }     // Function to find Union  static void Union(int a, int b)  {      int i = Root(a);      int j = Root(b);         if (i != j) {          if (sz[i] >= sz[j]) {              id[j] = i;              sz[i] += sz[j];              sz[j] = 0;          }          else {              id[i] = j;              sz[j] += sz[i];              sz[i] = 0;          }      }  }     // function to find minimum changes required  // to make both array equal.  static int minChange(int n, int a[], int b[])  {         // Sets as single elements      for (int i = 0; i < N; i++)          {              id[i] = i;              sz[i] = 1;          }         // Combine items if they belong to different      // sets.      for (int i = 0; i < n; ++i)             // true if both elements have different root          if (Root(a[i]) != Root(b[i]))              Union(a[i], b[i]); // make root equal         // Find sum sizes of all sets formed.      int ans = 0;      for (int i = 0; i < n; ++i)          if (id[i] == i)              ans += (sz[i] - 1);         return ans;  }     // Driver program  public static void main(String[] args)  {         int a[] = { 2, 1, 1, 3, 5 }, b[] = { 1, 2, 2, 4, 5 };      int n = a.length;      System.out.println(minChange(n, a, b));  }  }  // This code is contributed by mits

## Python 3

 # Python 3 program to find minimum changes  # required to make two arrays identical     N = 100010    # 'id':stores parent of a node  # 'sz':stores size of a DSU tree  ID = [0 for i in range(N)]  sz = [0 for i in range(N)]     # function to assign root  def Root(idx):      i = idx      while i != ID[i]:          ID[i], i = ID[ID[i]], ID[i]      return i     # Function to find Union  def Union(a, b):      i, j = Root(a), Root(b)             if i != j:          if sz[i] >= sz[j]:              ID[j] = i              sz[i] += sz[j]              sz[j] = 0         else:              ID[i] = j              sz[j] += sz[i]              sz[i] = 0    # function to find minimum changes  # reqired to make both array equal  def minChange(n, a, b):             # sets as single elements      for i in range(N):          ID[i] = i          sz[i] = 1                # Combine items if they belong       # to differnet sets      for i in range(n):                     # true if both elements have          # different root          if Root(a[i]) != Root(b[i]):              Union(a[i], b[i])             # find sum sizes of all sets formed      ans = 0     for i in range(n):          if ID[i] == i:              ans += (sz[i] - 1)             return ans         # Driver Code  a = [2, 1, 1, 3, 5]  b = [1, 2, 2, 4, 5]  n = len(a)     print(minChange(n, a, b))     # This code is contributed   # by Mohit kumar 29 (IIIT gwalior)

## C#

 // C# program to find minimum changes   // required to make two arrays identical  using System;     class GFG{  static int N=100010;     /* 'id': stores parent of a node.      'sz': stores size of a DSU tree. */ static int []id=new int[100010];  static int []sz=new int[100010];     // Function to assign root  static int Root(int idx)  {      int i = idx;      while (i != id[i])          {              id[i] = id[id[i]];              i = id[i];          }         return i;  }     // Function to find Union  static void Union(int a, int b)  {      int i = Root(a);      int j = Root(b);         if (i != j) {          if (sz[i] >= sz[j]) {              id[j] = i;              sz[i] += sz[j];              sz[j] = 0;          }          else {              id[i] = j;              sz[j] += sz[i];              sz[i] = 0;          }      }  }     // function to find minimum changes required  // to make both array equal.  static int minChange(int n, int []a, int []b)  {         // Sets as single elements      for (int i = 0; i < N; i++)          {              id[i] = i;              sz[i] = 1;          }         // Combine items if they belong to different      // sets.      for (int i = 0; i < n; ++i)             // true if both elements have different root          if (Root(a[i]) != Root(b[i]))              Union(a[i], b[i]); // make root equal         // Find sum sizes of all sets formed.      int ans = 0;      for (int i = 0; i < n; ++i)          if (id[i] == i)              ans += (sz[i] - 1);         return ans;  }     // Driver program  public static void Main()  {         int []a = { 2, 1, 1, 3, 5 };      int []b = { 1, 2, 2, 4, 5 };      int n = a.Length;      Console.WriteLine(minChange(n, a, b));  }  }  // This code is contributed by anuj_67..

## PHP

= $sz[$j])
{
$id[$j] = $i;$sz[$i] +=$sz[$j];$sz[$j] = 0; } else {$id[$i] =$j;
$sz[$j] += $sz[$i];
$sz[$i] = 0;
}
}
}

// function to find minimum changes
// required to make both array equal.
function minChange($n, &$a, &$b) { global$id, $sz,$N;

// Sets as single elements
for ($i = 0;$i < $N;$i++) { $id[$i] = $i;$sz[$i] = 1; } // Combine items if they belong to // different sets. for ($i = 0; $i <$n; ++$i) // true if both elements have // different roots if (Root($a[$i]) != Root($b[$i])) Union($a[$i],$b[$i]); // make root equal // Find sum sizes of all sets formed.$ans = 0; for ($i = 0;$i < $n; ++$i) if ($id[$i] == $i)$ans += ($sz[$i] - 1); return $ans; } // Driver Code$a = array(2, 1, 1, 3, 5); $b = array(1, 2, 2, 4, 5);$n = sizeof($a); echo minChange($n, $a,$b); // This code is contributed by ita_c ?>

Output:

2


Time Complexity: O(N + n) where N is maximum possible value of an array item and n is number of elements in the array.

My Personal Notes arrow_drop_up