Number of subarrays for which product and sum are equal

Given a array of n numbers. We need to count the number of subarrays having the product and sum of elements are equal
Examples:

Input  : arr[] = {1, 3, 2}
Output : 4
The subarrays are :
[0, 0] sum = 1, product = 1,
[1, 1] sum = 3, product = 3,
[2, 2] sum = 2, product = 2 and 
[0, 2] sum = 1+3+2=6, product = 1*3*2 = 6

Input : arr[] = {4, 1, 2, 1}
Output : 5

The idea is simple, we check for each subarray that if product and sum of its elements are equal or not. If it is then increase the counter variable by 1

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to count subarrays with
// same sum and product.
#include<bits/stdc++.h>
using namespace std;
  
// returns required number of subarrays
int numOfsubarrays(int arr[] , int n)
{
    int count = 0; // Initialize result
  
    // checking each subarray
    for (int i=0; i<n; i++)
    {
        int product = arr[i];
        int sum = arr[i];
        for (int j=i+1; j<n; j++)
        {
            // checking if product is equal
            // to sum or not
            if (product==sum)
                count++;
  
            product *= arr[j];
            sum += arr[j];
        }
  
        if (product==sum)
            count++;
    }
    return count;
}
  
// driver function
int main()
{
    int arr[] = {1,3,2};
    int n = sizeof(arr)/sizeof(arr[0]);
    cout << numOfsubarrays(arr , n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to count subarrays with
// same sum and product.
  
class GFG
{
    // returns required number of subarrays
    static int numOfsubarrays(int arr[] , int n)
    {
        int count = 0; // Initialize result
       
        // checking each subarray
        for (int i=0; i<n; i++)
        {
            int product = arr[i];
            int sum = arr[i];
            for (int j=i+1; j<n; j++)
            {
                // checking if product is equal
                // to sum or not
                if (product==sum)
                    count++;
       
                product *= arr[j];
                sum += arr[j];
            }
       
            if (product==sum)
                count++;
        }
        return count;
    }
      
    // Driver function
    public static void main(String args[])
    {
        int arr[] = {1,3,2};
        int n = arr.length;
        System.out.println(numOfsubarrays(arr , n));
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# python program to
# count subarrays with
# same sum and product.
  
# returns required
# number of subarrays
def numOfsubarrays(arr,n):
  
    count = 0 # Initialize result
   
    # checking each subarray
    for i in range(n):
      
        product = arr[i]
        sum = arr[i]
        for j in range(i+1,n):
          
            # checking if product is equal
            # to sum or not
            if (product==sum):
                count+=1
   
            product *= arr[j]
            sum += arr[j]
          
   
        if (product==sum):
            count+=1
      
    return count
  
# Driver code
  
arr = [1,3,2]
n =len(arr)
print(numOfsubarrays(arr , n))
  
# This code is contributed
# by Anant Agarwal.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to count subarrays 
// with same sum and product.
using System;
class GFG {
      
    // returns required number
    // of subarrays
    static int numOfsubarrays(int []arr , 
                              int n)
    {
          
        // Initialize result
        int count = 0; 
      
        // checking each subarray
        for (int i = 0; i < n; i++)
        {
            int product = arr[i];
            int sum = arr[i];
            for (int j = i + 1; j < n; j++)
            {
                  
                // checking if product is 
                // equal to sum or not
                if (product == sum)
                    count++;
      
                product *= arr[j];
                sum += arr[j];
            }
      
            if (product == sum)
                count++;
        }
        return count;
    }
      
    // Driver Code
    public static void Main()
    {
        int []arr = {1,3,2};
        int n = arr.Length;
        Console.Write(numOfsubarrays(arr , n));
    }
}
  
// This code is contributed by Nitin Mittal.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to count subarrays
// with same sum and product.
  
// function returns required 
// number of subarrays
function numOfsubarrays($arr , $n)
{
    // Initialize result
    $count = 0; 
  
    // checking each subarray
    for ($i = 0; $i < $n; $i++)
    {
        $product = $arr[$i];
        $sum = $arr[$i];
        for ($j = $i + 1; $j < $n; $j++)
        {
              
            // checking if product is
            // equal to sum or not
            if ($product == $sum)
                $count++;
  
            $product *= $arr[$j];
            $sum += $arr[$j];
        }
  
        if ($product == $sum)
            $count++;
    }
    return $count;
}
  
// Driver Code
$arr = array(1, 3, 2);
$n = sizeof($arr);
echo(numOfsubarrays($arr, $n));
  
// This code is contributed by Ajit.
?>

chevron_right



Output:

4

Time Complexity : O(n2)

This article is contributed by Ayush Jha. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : Hariesh, nitin mittal, jit_t



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.