Number of triangles after N moves

Find the number of triangles in Nth step,
Rules: Draw an equilateral triangle at the start. In the i-th move, take the uncolored triangles, divides each of them in 4 parts of equal areas and color the central part. Keep a count of triangles till the Nth step.

Examples:

Input : 1
Output : 5 
Explanation: In 1st move we get


Input : 2
Output : 17 
Explanation: In 2nd move we get


Naive approach:
The number of triangles in the nth figure are 3 times the number of triangles in the (n-1)th figure+2. We can see by observation the nth figure is made by placing 3 triangles similar to that in (n-1) figure and an inverted triangle. We also take into account the bigger triangle that has been formed. Hence the number of triangles in the nth figure becomes (number of triangles in the (n-1)th figure)*3 + 2.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// cpp program to calculate the number of equilateral
// triangles
#include <bits/stdc++.h>
using namespace std;
// fucntion to calculate number of traingles in Nth step
int numberOfTriangles(int n)
{
    int answer[n + 1] = { 0 };
    answer[0] = 1;
    for (int i = 1; i <= n; i++) 
        answer[i] = answer[i - 1] * 3 + 2;
      
    return answer[n];
}
  
// driver program 
int main()
{
    int n = 2;
    cout << numberOfTriangles(n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find middle of three 
// distinct numbers to calculate the 
// number of equilateral triangles
import java.util.*;
  
class Triangle
{   
    // fucntion to calculate number of 
    // traingles in Nth step
    public static int numberOfTriangles(int n)
    {
        int[] answer = new int[n+1];
        answer[0] = 1;
          
        for (int i = 1; i <= n; i++) 
            answer[i] = answer[i - 1] * 3 + 2;
      
        return answer[n];
    }
      
    // driver code
    public static void main(String[] args)
    {
        int n = 2;
        System.out.println(numberOfTriangles(n));
    }
}
  
// This code is contributed by rishabh_jain

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 code to calculate the 
# number of equilateral triangles
  
# fucntion to calculate number 
# of traingles in Nth step
def numberOfTriangles (n) :
    answer = [None] * (n + 1);
    answer[0] = 1;
    i = 1
    while i <= n: 
        answer[i] = answer[i - 1] * 3 + 2;
        i = i + 1
      
    return answer[n];
  
# Driver code
n = 2
print(numberOfTriangles(n))
  
# This code is contributed by "rishabh_jain".

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find middle of three 
// distinct numbers to calculate the 
// number of equilateral triangles
using System;
  
class Triangle
    // fucntion to calculate number of 
    // traingles in Nth step
    public static int numberOfTriangles(int n)
    {
        int[] answer = new int[n+1];
        answer[0] = 1;
          
        for (int i = 1; i <= n; i++) 
            answer[i] = answer[i - 1] * 3 + 2;
      
        return answer[n];
    }
      
    // Driver code
    public static void Main()
    {
        int n = 2;
        Console.WriteLine(numberOfTriangles(n));
    }
}
  
// This code is contributed by vt_m

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to calculate
// the number of equilateral
// triangles
  
// function to calculate number
// of traingles in Nth step
function numberOfTriangles($n)
{
    $answer = array();
    $answer[0] = 1;
    for ($i = 1; $i <= $n; $i++) 
        $answer[$i] = $answer[$i - 1] * 
                               3 + 2;
      
    return $answer[$n];
}
  
    // Driver Code
    $n = 2;
    echo numberOfTriangles($n);
  
// This code is contributed by anuj_67.
?>

chevron_right



Output:

17

Time Complexity: O(n)

An efficient solution will be to derive a formula for Nth step:
If we follow the naive approach for every step, then we get for Nth step the number of triangles to be

(2*(3^n))-1.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to calculate the number of 
// equilateral triangles
#include <bits/stdc++.h>
using namespace std;
  
// function to calculate number of triangles 
// in Nth step
int numberOfTriangles(int n)
{
    int ans = 2 * (pow(3, n)) - 1;
    return ans;
}
  
// driver program 
int main()
{
    int n = 2;
    cout << numberOfTriangles(n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find middle of three 
// distinct numbers to calculate the
// number of equilateral triangles
import java.util.*;
import static java.lang.Math.pow;
  
class Triangle
{   
    // function to calculate number 
    // of triangles in Nth step
    public static double numberOfTriangles(int n)
    {
        double ans = 2 * (pow(3, n)) - 1;
        return ans;
    }
      
    // driver code
    public static void main(String[] args)
    {
        int n = 2;
        System.out.println(numberOfTriangles(n));
    }
}
  
// This code is contributed by rishabh_jain

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 code to calculate the 
# number of equilateral triangles
  
# fucntion to calculate number
# of traingles in Nth step
def numberOfTriangles (n) :
    ans = 2 * (pow(3, n)) - 1;
    return ans;
  
# Driver code
n = 2
print (numberOfTriangles(n))
  
# This code is contributed by "rishabh_jain".

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

//C# program to find middle of three 
// distinct numbers to calculate the
// number of equilateral triangles
using System;
  
class Triangle
    // function to calculate number 
    // of triangles in Nth step
    public static double numberOfTriangles(int n)
    {
        double ans = 2 * (Math.Pow(3, n)) - 1;
        return ans;
    }
      
    // Driver code
    public static void Main()
    {
        int n = 2;
        Console.WriteLine(numberOfTriangles(n));
    }
}
  
// This code is contributed by vt_m

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to calculate the 
// number of equilateral triangles
  
// function to calculate 
// number of triangles 
// in Nth step
function numberOfTriangles($n)
{
    $ans = 2 * (pow(3, $n)) - 1;
    return $ans;
}
  
    // Driver Code
    $n = 2;
    echo numberOfTriangles($n);
  
// This code is contributed by anuj_67.
?>

chevron_right



Output:

17

Time Complexity: O(log n), log n is needed to compute 3^n.



My Personal Notes arrow_drop_up

Striver(underscore)79 at Codechef and codeforces D

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : vt_m