numpy.hypot() in Python

numpy.exp2(arr1, arr2[, out]) = ufunc ‘hypot’) : This mathematical function helps user to calculate hypotenuse for the right angled triangle, given its side and perpendicular. Result is equivalent to Equivalent to sqrt(x1**2 + x2**2), element-wise.

Parameters :

arr1, arr2  : [array_like] Legs(side and perpendicular) of triangle
out         : [ndarray, optional] Output array with result.

Return :

An array having hypotenuse of the right triangle.

 
Code #1 : Working

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program explaining
# hypot() function
  
import numpy as np
  
leg1 = [12, 3, 4, 6]
print ("leg1 array : ", leg1)
  
  
leg2 = [5, 4, 3, 8]
print ("leg2 array : ", leg2)
  
result = np.hypot(leg1, leg2)
print("\nHypotenuse is as follows :")
print(result)

chevron_right


Output :

leg1 array :  [12, 3, 4, 6]
leg2 array :  [5, 4, 3, 8]

Hypotenuse is as follows :
[ 13.   5.   5.  10.]

 
Code #2 : Working with 2D array

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program explaining
# hypot() function
  
import numpy as np
  
leg1 = np.random.rand(3, 4)
print ("leg1 array : \n", leg1)
  
leg2 = np.ones((3, 4))
print ("leg2 array : \n", leg2)
  
result = np.hypot(leg1, leg2)
print("\nHypotenuse is as follows :")
print(result)

chevron_right


Output :

leg1 array : 
 [[ 0.57520509  0.12043366  0.50011671  0.13800957]
 [ 0.0528084   0.17827692  0.44236813  0.87758732]
 [ 0.94926413  0.47816742  0.46111934  0.63728903]]
leg2 array : 
 [[ 1.  1.  1.  1.]
 [ 1.  1.  1.  1.]
 [ 1.  1.  1.  1.]]

Hypotenuse is as follows :
[[ 1.15362944  1.00722603  1.11808619  1.0094784 ]
 [ 1.00139339  1.01576703  1.09347591  1.33047342]
 [ 1.37880469  1.10844219  1.10119528  1.18580661]]

 
Code 3 : Equivalent to sqrt(x1**2 + x2**2), element-wise.

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program explaining
# hypot() function
  
import numpy as np
  
leg1 = np.random.rand(3, 4)
print ("leg1 array : \n", leg1)
  
leg2 = np.ones((3, 4))
print ("leg2 array : \n", leg2)
  
result = np.sqrt((leg1 * leg1) + (leg2 * leg2))
print("\nHypotenuse is as follows :")
print(result)

chevron_right


Output :

leg1 array : 
 [[ 0.7015073   0.89047987  0.1595603   0.27557254]
 [ 0.67249153  0.16430312  0.70137114  0.48763522]
 [ 0.68067777  0.52154819  0.04339669  0.2239366 ]]
leg2 array : 
 [[ 1.  1.  1.  1.]
 [ 1.  1.  1.  1.]
 [ 1.  1.  1.  1.]]

Hypotenuse is as follows :
[[ 1.15362944  1.00722603  1.11808619  1.0094784 ]
 [ 1.00139339  1.01576703  1.09347591  1.33047342]
 [ 1.37880469  1.10844219  1.10119528  1.18580661]]

References :
https://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.hypot.html#numpy.hypot
.



My Personal Notes arrow_drop_up

Aspire to Inspire before I expire

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.