Print sum of matrix and its mirror image

You are given a matrix of order N*N. The task is to find the resultant matrix by adding the mirror image of given matrix with the matrix itself.

Examples:

Input : mat[][] = {{1, 2, 3},
                              {4, 5, 6},
                              {7, 8, 9}}
Output : 4 4 4
               10 10 10
               16 16 16
Explanation:  
Resultant Matrix = {{1, 2, 3},      {{3, 2, 1}, 
                                 {4, 5, 6},   +   {6, 5, 4},
                                 {7, 8, 9}}       {9, 8, 7}}

Input : mat[][] = {{1, 2},
                               {3, 4}}
Output : 3 3
               7 7

While finding the mirror image of matrix the row of each element will remain same but the value of its columns will reshuffle. For any element Aij its new position in mirror image will be Ai(n-j). After getting the mirror image of matrix add it to original matrix and print the result.

Points to take care:

  1. Indexing of matrix will start from 0, 0 and ends on n-1, n-1 hence position of any element Aij will be Ai(n-1-j).
  2. While printing the result take care of proper output format

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find sum of matrix and
// its mirror image
#include <bits/stdc++.h>
  
#define N 4
using namespace std;
  
// Function to print the resultant matrix
void printSum(int mat[][N])
{
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < N; j++) {
            cout << setw(3) << mat[i][N - 1 - j] + mat[i][j] << " ";
        }
  
        cout << "\n";
    }
}
  
// Driver Code
int main()
{
    int mat[N][N] = { { 2, 4, 6, 8 },
                      { 1, 3, 5, 7 },
                      { 8, 6, 4, 2 },
                      { 7, 5, 3, 1 } };
  
    printSum(mat);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find sum of 
// matrix and its mirror image
import java.io.*;
  
class GFG 
{
static int N = 4;
  
// Function to print the 
// resultant matrix
static void printSum(int mat[][])
{
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            System.out.print((mat[i][N - 1 - j] +
                              mat[i][j]) + " ");
        }
  
        System.out.println();
    }
}
  
// Driver Code
public static void main (String[] args) 
{
    int mat[][] = { { 2, 4, 6, 8 },
                    { 1, 3, 5, 7 },
                    { 8, 6, 4, 2 },
                    { 7, 5, 3, 1 } };
  
    printSum(mat);
}
}
  
// This code is contributed by anuj_67

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find sum of 
// matrix and its mirror image
using System;
  
class GFG 
{
static int N = 4;
  
// Function to print the 
// resultant matrix
static void printSum(int [,]mat)
{
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            Console.Write((mat[i, N - 1 - j] +
                           mat[i, j]) + " ");
        }
  
        Console.WriteLine();
    }
}
  
// Driver Code
public static void Main () 
{
    int [,]mat = { { 2, 4, 6, 8 },
                   { 1, 3, 5, 7 },
                   { 8, 6, 4, 2 },
                   { 7, 5, 3, 1 } };
  
    printSum(mat);
}
}
  
// This code is contributed by shs..

chevron_right


PHP

Output:

10  10  10  10 
  8   8   8   8 
 10  10  10  10 
  8   8   8   8


My Personal Notes arrow_drop_up


Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.