Program to find smallest difference of angles of two parts of a given circle

Given a division of circle into n pieces as an array of size n. The i-th element of the array denotes the angle of one piece. Our task is to make two continuous parts from these pieces so that the difference between angles of these two parts is minimum.

Examples :

Input : arr[] = {90, 90, 90, 90}
Output : 0
In this example, we can take 1 and 2 
pieces and 3 and 4 pieces. Then the 
answer is |(90 + 90) - (90 + 90)| = 0.

Input : arr[] = {170, 30, 150, 10}
Output : 0
In this example, we can take 1 and 4, 
and 2 and 3 pieces. So the answer is 
|(170 + 10) - (30 + 150)| = 0.

Input : arr[] = {100, 100, 160}
Ouput : 40

We can notice that if one of the part is continuous then all the remaining pieces also form a continuous part. If angle of the first part is equal to x then difference between angles of first and second parts is |x – (360 – x)| = |2 * x – 360| = 2 * |x – 180|. So for each possible continuous part we can count it’s angle and update answer.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find minimum 
// difference of angles of two 
// parts of given circle.
#include <bits/stdc++.h>
using namespace std;
  
// Returns the minimum difference
// of angles.
int findMinimumAngle(int arr[], int n)
{
    int l = 0, sum = 0, ans = 360;
    for (int i = 0; i < n; i++) {
        // sum of array
        sum += arr[i];
  
        while (sum >= 180) {
  
            // calculating the difference of 
            // angles and take minimum of 
            // previous and newly calculated
            ans = min(ans, 2 * abs(180 - sum));
            sum -= arr[l];
            l++;
        }
  
        ans = min(ans, 2 * abs(180 - sum));
    }
    return ans;
}
  
// driver code
int main()
{
    int arr[] = { 100, 100, 160 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << findMinimumAngle(arr, n) << endl;
    return 0;
}
  
// This code is contributed by "Abhishek Sharma 44"

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// java program to find minimum 
// difference of angles of two 
// parts of given circle.
import java.util.*;
  
class Count{
    public static int findMinimumAngle(int arr[], int n)
    {
        int l = 0, sum = 0, ans = 360;
        for (int i = 0; i < n; i++)
        {
            // sum of array
            sum += arr[i];
      
            while (sum >= 180
            {
      
                // calculating the difference of 
                // angles and take minimum of 
                // previous and newly calculated
                ans = Math.min(ans,
                            2 * Math.abs(180 - sum));
                sum -= arr[l];
                l++;
            }
      
            ans = Math.min(ans,
                            2 * Math.abs(180 - sum));
        }
          
        return ans;
          
    }
      
    public static void main(String[] args)
    {
        int arr[] = { 100, 100, 160 };
        int n = 3;
        System.out.print(findMinimumAngle(arr, n));
    }
}
  
// This code is contributed by rishabh_jain

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# java program to find minimum 
# difference of angles of two 
# parts of given circle.
import math
  
# function returns the minimum 
# difference of angles.
def findMinimumAngle (arr, n):
    l = 0
    _sum = 0
    ans = 360
    for i in range(n):
          
        #sum of array
        _sum += arr[i]
          
        while _sum >= 180:
          
            # calculating the difference of
            # angles and take minimum of 
            # previous and newly calculated
            ans = min(ans, 2 * abs(180 - _sum))
            _sum -= arr[l]
            l+=1
        ans = min(ans, 2 * abs(180 - _sum))
    return ans
      
# driver code
arr = [100, 100, 160]
n = len(arr)
print(findMinimumAngle (arr, n))
  
# This code is contributed by "Abhishek Sharma 44"

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find minimum 
// difference of angles of two 
// parts of given circle.
using System;
  
class GFG
{
    public static int findMinimumAngle(int []arr, int n)
    {
        int l = 0, sum = 0, ans = 360;
        for (int i = 0; i < n; i++)
        {
            // sum of array
            sum += arr[i];
      
            while (sum >= 180) 
            {
      
                // calculating the difference of 
                // angles and take minimum of 
                // previous and newly calculated
                ans = Math.Min(ans,
                      2 * Math.Abs(180 - sum));
                sum -= arr[l];
                l++;
            }
      
            ans = Math.Min(ans,
                        2 * Math.Abs(180 - sum));
        }
          
        return ans;
          
    }
      
    // Driver code
    public static void Main()
    {
        int []arr = { 100, 100, 160 };
        int n = 3;
        Console.WriteLine(findMinimumAngle(arr, n));
    }
}
  
// This code is contributed by vt_m

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find minimum 
// difference of angles of two 
// parts of given circle.
  
// Returns the minimum difference
// of angles.
function findMinimumAngle($arr, $n)
{
    $l = 0; $sum = 0; $ans = 360;
    for ($i = 0; $i < $n; $i++) 
    {
        // sum of array
        $sum += $arr[$i];
  
        while ($sum >= 180) 
        {
  
            // calculating the difference of 
            // angles and take minimum of 
            // previous and newly calculated
            $ans = min($ans, 2 * 
                             abs(180 - $sum));
            $sum -= $arr[$l];
            $l++;
        }
  
        $ans = min($ans, 2 * abs(180 - $sum));
    }
    return $ans;
}
  
// Driver Code
$arr = array( 100, 100, 160 );
$n = sizeof($arr);
echo findMinimumAngle($arr, $n), "\n" ;
  
// This code is contributed by m_kit
?>

chevron_right



Output :

40


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.




Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.